If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2+20x=0
a = 25; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·25·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*25}=\frac{-40}{50} =-4/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*25}=\frac{0}{50} =0 $
| 10g+5+6g=-1+16g+16 | | 4(w-3)-6w=-2(w=6) | | 5x+3=9-33 | | 15=-5/6w | | 1/4x+8=13 | | 11x+144=5 | | 12x+37+12x-2+20x+29+46=90 | | 5y+3y=11 | | 15=-3(2+x)-4x | | -16=5x=4(3x+7) | | 12x+37+12x-2+20x+29+46=360 | | 3/5x+6=(2/5x)2 | | 7g=-9-6g | | 22x+8=118 | | a−(−3.75)=6.11 | | 4x-10=5x-8 | | 46=x–4.8 | | 46=n–4.8 | | (9.5/19)=(x/30) | | x+131+60=180 | | 12w+6=2(6w+3) | | 4d+8=16 | | 37=-3+5(x+9) | | 7(3x-2)=35 | | 7=84x | | 5x+6=12x+30 | | x-+6x=21+15+3x | | 4(2x-3)=12+8x | | 4x-3=-2+3 | | -18.84-14.4x-11.87=-11.7x-6.95 | | 10x=28x+1 | | 5x+2x+5=40 |